산업동향
Photonics Poised to Cross Over into Biotech
- 등록일2008-11-12
- 조회수4908
- 분류산업동향 > 종합 > 종합
-
자료발간일
2008-11-01
-
출처
Genetic Engineering &Biotechnology News
- 원문링크
-
키워드
#Biophotonics
Photonics Poised to Cross Over into Biotech
Utility of Products in the Biomedical Arena Is Driving Exponential Growth for Biophotonics
Andres Hiller
It is rare that one can predict the future, especially in the healthcare market. Foreseeing a future growth spike can be especially difficult. Often there are clues that dramatic growth will occur, however. A dead give away may be if scores of new competitors enter a market and the existing companies do not suffer. Another clue is the presence of a rich pool of untapped customers who could benefit from the products. Both of these factors are evident in biophotonics, the broad term for the application, modification, and detection of photons in cells, tissues, or organisms.
Generally used in medical imaging to achieve greater amplification and more precise localization of specific areas of a specimen, biophotonics is, at this time, limited to the research laboratory—mostly in pharmaceutical discovery and development, molecular biology research, clinical research, and histology/cytology research.
In these areas biophotonics has shown double-digit growth, and the number of competitors has increased fivefold. But given the needs of hospital labs for better and more expanded information it’s not hard to imagine biophotonic techniques crossing over to clinical diagnostics, with an exponential increase in the volume of procedures and subsequently revenues.
Basics of Biophotonics
Currently centered on microscopy and related technologies, biophotonics looks at biological functions at the cellular level or even smaller. In addition, new technologies are emerging that use electrophysiology and other probes for measuring biological functions. There are many different types of microscopy and associated technologies, all are essential to the application of biophotonics.
Optical Sectioning Microscopy. The classical way to study samples under a light microscope involves fixing a stain and preparing a thin slice for examination. If the area of interest is located in the interior of the slice, however, it could be obscured and out of focus.
Techniques have been developed that enable whole-mount samples to be examined by optical sectioning, which minimizes or eliminates this out-of-focus interference.
Photon Limited Microscopy. Many optical visualization techniques applied to the study of living tissues must work at photon-limiting levels of signal. This is particularly the case for in vivo fluorescence studies. Because of the need to work at ultralow light levels, the development of advanced imaging detectors such as cooled, charge-coupled devices with high-photon detection efficiencies and microscopes with low-loss optics was required. In order to make the most effective use of such low-light level microscopes, advanced digital electronics are needed along with computer algorithms to enhance photon-limited images.
☞ 내용바로가기를 이용하시기 바랍니다.